
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Homework 2
(Due date: October 9th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (10 PTS)
 Given a 24 MHz bus clock, provide a set of instructions to generate:

 A time delay of 40 ms.
 A time delay of 60 ms.

PROBLEM 2 (30 PTS)
 The following directives store a bunch of numbers in memory that

represent degrees in Celsius.

Complete the program (provide a printout) that converts those
numbers to Fahrenheit degrees. Use a subroutine for the Celsius to

Fahrenheit conversion (𝐹 =
𝐶×9

5
+ 32). Use a loop to convert every

number in the array. Store the result in the arrayF array.

; Include derivative-specific definitions

INCLUDE 'derivative.inc'

ROMStart EQU $4000 ;

N EQU 10

; variable/data section

 ORG RAMStart ; Originate data at address

RAMStart

; variables definition:

arrayC dc.w -21, 32, 45, 1120, 41, 13, -39, 100, 123, 0;

arrayF ds.w N;

 For the division by 5, only consider the integer part of the division.

Also, keep in mind that the input array contains 16-bit signed numbers.

PROBLEM 3 (20 PTS)
 For the following code snippets, complete the value of the register when the last instruction is executed:

ldaa #$8C

ldx #$04

loop: asra

 inca

 dbne X,loop

frvr: bra frvr

 ldaa #$59

 staa $F0

 brset $F0,$3A,next

 inc $F0

next: asr $F0

 ldaa $F0

 ldd #$F3FE

 cba

 bmi next

 addd #$10F0

next: deca

 decb

 movw #$40FF, $F1

 ldd #$7122

 addd $F1

 bvs next

 inca

next: decb

A = A = D = D =

 For the following code snippets, specify a value of B that makes the branch instruction branch to ‘next’:

ldab #$___

cmpb #$EB

bhs next

ldab #$___

stab $FF

dec $FF

brclr $FF,$60,next

ldab #$___

clc

rolb

bcs next

ldab #$___

clc

asrb

cmpb #$EB

bge next

ldab #$___

addb #$F1

bpl next

ldab #$___

incb

cmpb #$FB

blt next

ldab #$___

eorb #$45

bitb #$34

beq next

B = B = B = B = B = B = B =

PROBLEM 4 (20 PTS)
 Create an Assembly program (provide a printout) that reads the DIP Switch of the Dragon12-Light Board and displays the

hexadecimal value present on the 4 LSBs. Utilize the 4 MSBs of the DIP Switch to determine which 7-segment displays to
display: Bit 7 (MSB) controls display 3 (rightmost), bit 6 controls the display 2, bit 5 controls display 1, bit 4 controls display
0 (leftmost).

Examples:

- If DIP Switch: 11001001, we display the character ‘9’ on the two rightmost 7-segment displays.

- If DIP Switch: 00011110, we display the character ‘E’ on the leftmost 7-segment display.

- If DIP Switch: 00001001, no character is displayed.

Address 8 bits

$FF

$EB

0x4000

0x4001

...

...

$00

$20

$FF

...

0x1000

0x1001

0x1002

0x1003

RAMStart arrayC

arrayF

ROMStart

$FB

$00

0x1015

0x1014

$59

0x1016

0x1017

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

PROBLEM 5 (20 PTS)
 Given the following Assembly code, specify the SP and the Stack Contents at the given times (right after the colored

instruction has been executed). SP and the Stack Contents (empty) are specified for the first instruction (LDS #$4000).

0x4000

0x4001

...

...

...

0x1000

0x1001

SP

0x3FFF

...

0x4012

SP: $4000

ROMStart EQU $4000

; code section

ORG ROMStart

Entry:

_Startup: LDS #$4000

mainLoop: movb #$F1,1,-SP

movb #$A3,1,-SP

movb #$97,1,-SP

ldd #$FACE

bsr myfun

leas 3,SP

forever: bra forever

; Subroutine

myfun: psha

pshb

leas -2,SP;

movw #$568A, 0,SP

leas 2,SP;

pulb

pula

rts

0x4000

0x4001

...

...

...

0x1000

0x1001

0x3FFF

...

0x4012

SP:

0x4000

0x4001

...

...
...

0x1000

0x1001

0x3FFF

...

0x4012

SP:

0x4000

0x4001

...

...

...

0x1000

0x1001

0x3FFF

...

0x4012

SP:

